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Abstract— While deep learning based methods for generic
object detection have improved rapidly in the last two years,
most approaches to face detection are still based on the R-CNN
framework [11], leading to limited accuracy and processing
speed. In this paper, we investigate applying the Faster R-
CNN [26], which has recently demonstrated impressive results
on various object detection benchmarks, to face detection. By
training a Faster R-CNN model on the large scale WIDER
face dataset [34], we report state-of-the-art results on the
WIDER test set as well as two other widely used face detection
benchmarks, FDDB and the recently released IJB-A.

I. INTRODUCTION

Deep convolutional neural networks (CNNs) have domi-
nated many tasks in computer vision. For object detection,
region-based CNN detection methods are now the main
paradigm. It is such a rapidly developing area that three
generations of region-based CNN detection models, from the
R-CNN [11], to the Fast R-CNN [10], and finally the Faster
R-CNN [26], have been proposed in the last few years, with
increasingly better accuracy and faster processing speed.

Although generic object detection methods have seen large
advances in the last two years, the methodology of face de-
tection has lagged behind somewhat. Most of the approaches
are still based on the R-CNN framework, leading to limited
accuracy and processing speed, reflected in the results on the
de facto FDDB [14] benchmark. In this paper, we investigate
how to apply state-of-the art object detection methods to
face detection and motivate more advanced methods for the
future.

Unlike generic object detection, there has been no large-
scale face detection dataset that allowed training a very deep
CNN until the recent release of the WIDER dataset [34].
The first contribution of this paper is to evaluate the state-
of-the-art Faster R-CNN on this large database of faces. In
addition, it is natural to ask if we could get an off-the-shelf
face detector to perform well when it is trained on one data
set and tested on another. Our paper answers this question
by training on WIDER and testing on FDDB.

The Faster R-CNN [26], as the latest generation of region-
based generic object detection methods, demonstrates im-
pressive results on various object detection benchmarks. It
is also the foundational framework for the winning entry
of the COCO detection challenge 2015.1 In this paper, we
demonstrate state-of-the-art face detection results using the

1http://mscoco.org/dataset/#detections-leaderboard

Faster R-CNN on three popular face detection benchmarks,
the widely used Face Detection Dataset and Benchmark
(FDDB) [14], the more recent IJB-A benchmark [15], and
the WIDER face dataset [34]. We also compare different
generations of region-based CNN object detection models,
and compare to a variety of other recent high-performing
detectors.

Our code and pre-trained face detection models can be
found at https://github.com/playerkk/face-py-faster-rcnn.

II. RELATED WORK

In this section, we briefly introduce previous work on face
detection. Considering the remarkable performance of deep
learning methods for face detection, we simply categorize
previous work as non-neural based and neural based meth-
ods.

Non-Neural Based Methods. Since the well-known work
of Viola and Jones [32], real-time face detection in uncon-
strained environments has been an active topic of study in
computer vision. The success of the Viola-Jones detector [32]
stems from two factors: fast evaluation of the Haar features
and the cascaded structure which allows early pruning of
false positives. In recent work, Chen et al. [3] demonstrate
better face detection performance with a joint cascade for
face detection and alignment, where shape-index features are
used.

A lot of other hand-designed features, including SURF [2],
LBP [1], and HOG [5], have also been applied to face
detection, achieving remarkable progress in the last two
decades. One of the significant advances was in using HOG
features with the Deformable Parts Model (DPM) [8], in
which the face was represented as a single root and a set
of deformable (semantic) parts (e.g., eyes, mouth, etc.). A
tree-structured deformable model is presented in [37], which
jointly addresses face detection and alignment. In [9], it
is shown that partial face occlusions can be dealt with
using a hierarchical deformable model. Mathias et al. [21]
demonstrate top face detection performance with a vanilla
DPM and rigid templates.

In addition to the feature plus model paradigm, Shen et
al. [28] utilize image retrieval techniques for face detection
and alignment. In [18], an efficient exemplar-based face
detection method is proposed, where exemplars are discrim-
inatively trained as weak learners in a boosting framework.

Neural Based Methods. There has been a long history
of training neural networks for face detection. In [31], two978-1-5090-4023-0/17/$31.00 c©2017 IEEE
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CNNs are trained: the first one classifies each pixel according
to whether it is part of a face, and the second one determines
the exact face position given the output of the first step.
Rowley et al. [27] present a retinally connected neural
network for face detection, which determines whether each
sliding window contains a face. In [22], a CNN is trained to
perform joint face detection and pose estimation.

Since 2012, deeply trained neural networks, especially
CNNs, have revolutionized many computer vision tasks,
including face detection, as witnessed by the increasingly
higher performance on the Face Detection Database and
Benchmark (FDDB) [14]. Ranjan et al. [24] introduced a de-
formable part model based on normalized features extracted
from a deep CNN. A CNN cascade is presented in [19]
which operates at multiple resolutions and quickly rejects
false positives. Following the Region CNN [11], Yang et
al. [33] proposed a two-stage approach for face detection.
The first stage generates a set of face proposals base on
facial part responses, which are then fed into a CNN in the
second stage for refinement. Farfade et al. [7] propose a
fully convolutional neural network to detect faces at different
resolutions. In a recent paper [20], a convolutional neural
network and a 3D face model are integrated in an end-to-
end multi-task discriminative learning framework.

Compared with non-neural based methods, which usually
rely on hand-crafted features, the Faster R-CNN can auto-
matically learn a feature representation from data. Compared
with other neural based methods, the Faster R-CNN allows
end-to-end learning of all layers, increasing its robustness.

Using the Faster R-CNN for face detection have been
studied in [12], [23]. In this paper, we don’t explicity address
the occlusion as in [12]. Instead, it turns out the Faster R-
CNN model can learn to deal with occlusions purely form
data. Compared with [23], we show it is possible to train
an off-the-shelf face detector and achieve state-of-the-art
performance on several benchmark datasets.

III. OVERVIEW OF THE FASTER R-CNN

After the remarkable success of a deep CNN [16] in image
classification on the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) 2012, it was asked whether the
same success could be achieved for object detection. The
short answer is yes.

A. Evolution of Region-based CNNs for Object Detection

Girshick et al. [11] introduced a region-based CNN (R-
CNN) for object detection. The pipeline consists of two
stages. In the first, a set of category-independent object
proposals are generated, using selective search [30]. In
the second refinement stage, the image region within each
proposal is warped to a fixed size (e.g., 227 × 227 for
the AlexNet [16]) and then mapped to a 4096-dimensional
feature vector. This feature vector is then fed into a classifier
and also into a regressor that refines the position of the
detection.

The significance of the R-CNN is that it brings the high
accuracy of CNNs on classification tasks to the problem of

object detection. Its success is largely due to transferring
the supervised pre-trained image representation for image
classification to object detection.

The R-CNN, however, requires a forward pass through the
convolutional network for each object proposal in order to
extract features, leading to a heavy computational burden. To
mitigate this problem, two approaches, the SPPnet [13] and
the Fast R-CNN [10] have been proposed. Instead of feeding
each warped proposal image region to the CNN, the SPPnet
and the Fast R-CNN run through the CNN exactly once
for the entire input image. After projecting the proposals to
convolutional feature maps, a fixed length feature vector can
be extracted for each proposal in a manner similar to spatial
pyramid pooling. The Fast R-CNN is a special case of the
SPPnet, which uses a single spatial pyramid pooling layer,
i.e., the region of interest (RoI) pooling layer, and thus allows
end-to-end fine-tuning of a pre-trained ImageNet model. This
is the key to its better performance relative to the original
R-CNN.

Both the R-CNN and the Fast R-CNN (and the SPPNet)
rely on the input generic object proposals, which usually
come from a hand-crafted model such as selective search [30]
or EdgeBox [6]. There are two main issues with this ap-
proach. The first, as shown in image classification and object
detection, is that (deeply) learned representations often gen-
eralize better than hand-crafted ones. The second is that the
computational burden of proposal generation dominate the
processing time of the entire pipeline (e.g., 2.73 seconds for
EdgeBox in our experiments). Although there are now deeply
trained models for proposal generation, e.g.DeepBox [17]
(based on the Fast R-CNN framework), its processing time
is still not negligible.

To reduce the computational burden of proposal gener-
ation, the Faster R-CNN was proposed. It consists of two
modules. The first, called the Regional Proposal Network
(RPN), is a fully convolutional network for generating object
proposals that will be fed into the second module. The second
module is the Fast R-CNN detector whose purpose is to
refine the proposals. The key idea is to share the same
convolutional layers for the RPN and Fast R-CNN detector
up to their own fully connected layers. Now the image only
passes through the CNN once to produce and then refine
object proposals. More importantly, thanks to the sharing of
convolutional layers, it is possible to use a very deep network
(e.g., VGG16 [29]) to generate high-quality object proposals.

The key differences of the R-CNN, the Fast R-CNN,
and the Faster R-CNN are summarized in Table I. The
running time of different modules are reported on the FDDB
dataset [14], where the typical resolution of an image is about
350 × 450. The code was run on a server equipped with
an Intel Xeon CPU E5-2697 of 2.60GHz and an NVIDIA
Tesla K40c GPU with 12GB memory. We can clearly see that
the entire running time of the Faster R-CNN is significantly
lower than for both the R-CNN and the Fast R-CNN.



TABLE I
COMPARISONS OF THE entire PIPELINE OF DIFFERENT REGION-BASED OBJECT DETECTION METHODS. (BOTH FACENESS [33] AND DEEPBOX [17]

RELY ON THE OUTPUT OF EDGEBOX. THEREFORE THEIR ENTIRE RUNNING TIME SHOULD INCLUDE THE PROCESSING TIME OF EDGEBOX.)

R-CNN Fast R-CNN Faster R-CNN

proposal stage time
EdgeBox: 2.73s

0.32sFaceness: 9.91s (+ 2.73s = 12.64s)
DeepBox: 0.27s (+ 2.73s = 3.00s)

refinement stage
input to CNN cropped proposal image input image & proposals input image

#forward thru. CNN #proposals 1 1
time 14.08s 0.21s 0.06s

total time
R-CNN + EdgeBox: 14.81s Fast R-CNN + EdgeBox: 2.94s

0.38sR-CNN + Faceness: 26.72s Fast R-CNN + Faceness: 12.85s
R-CNN + DeepBox: 17.08s Fast R-CNN + DeepBox: 3.21s

B. The Faster R-CNN

In this section, we briefy introduce the key aspects of the
Faster R-CNN. We refer readers to the original paper [26]
for more technical details.

In the RPN, the convolution layers of a pre-trained net-
work are followed by a 3 × 3 convolutional layer. This
corresponds to mapping a large spatial window or receptive
field (e.g., 228 × 228 for VGG16) in the input image to a
low-dimensional feature vector at a center stride (e.g., 16 for
VGG16). Two 1× 1 convolutional layers are then added for
classification and regression branches of all spatial windows.

To deal with different scales and aspect ratios of objects,
anchors are introduced in the RPN. An anchor is at each
sliding location of the convolutional maps and thus at the
center of each spatial window. Each anchor is associated
with a scale and an aspect ratio. Following the default setting
of [26], we use 3 scales (1282, 2562, and 5122 pixels) and 3
aspect ratios (1 : 1, 1 : 2, and 2 : 1), leading to k = 9 anchors
at each location. Each proposal is parameterized relative to
an anchor. Therefore, for a convolutional feature map of
size W × H , we have at most WHk possible proposals.
We note that the same features of each sliding location are
used to regress k = 9 proposals, instead of extracting k sets
of features and training a single regressor.t Training of the
RPN can be done in an end-to-end manner using stochastic
gradient descent (SGD) for both classification and regression
branches. For the entire system, we have to take care of
both the RPN and Fast R-CNN modules since they share
convolutional layers. In this paper, we adopt the approximate
joint learning strategy proposed in [25]. The RPN and Fast
R-CNN are trained end-to-end as they are independent. Note
that the input of the Fast R-CNN is actually dependent on
the output of the RPN. For the exact joint training, the SGD
solver should also consider the derivatives of the RoI pooling
layer in the Fast R-CNN with respect to the coordinates of
the proposals predicted by the RPN. However, as pointed out
by [25], it is not a trivial optimization problem.

IV. EXPERIMENTS

In this section, we report experiments on comparisons of
region proposals and also on end-to-end performance of top
face detectors.

Fig. 1. Sample images in the WIDER face dataset, where green bounding
boxes are ground-truth annotations.

A. Setup

We train a Faster R-CNN face detection model on the
recently released WIDER face dataset [34]. There are 12,880
images and 159,424 faces in the training set. In Fig. 1, we
demonstrate some randomly sampled images of the WIDER
dataset. We can see that there exist great variations in scale,
pose, and the number of faces in each image, making this
dataset challenging.

We train the face detection model based on a pre-trained
ImageNet model, VGG16 [29]. We randomly sample one
image per batch for training. In order to fit it in the GPU
memory, it is resized based on the ratio 1024/max(w, h),
where w and h are the width and height of the image,
respectively. We run the stochastic gradient descent (SGD)
solver for 50,000 iterations with a base learning rate of 0.001
and run another 30,000 iterations reducing the base learning
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Fig. 2. Comparisons of face proposals on FDDB using different methods.
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Fig. 3. Comparisons of region-based CNN object detection methods for
face detection on FDDB.

rate to 0.0001.2

In addition to the extemely challenging WIDER test-
ing set, we also test the trained face detection model
on two benchmark datasets, FDDB [14] and IJB-A [15].
There are 10 splits in both FDDB and IJB-A. For
testing, we resize the input image based on the ratio
min(600/min(w, h), 1024/max(w, h)). For the RPN, we
use only the top 300 face proposals to balance efficiency
and accuracy.

There are two criteria for quantatitive comparison for the
FDDB benchmark. For the discrete scores, each detection is
considered to be positive if its intersection-over-union (IoU)
ratioe with its one-one matched ground-truth annotation is
greater than 0.5. By varying the threshold of detection scores,

2We use the author released Python implementation
https://github.com/rbgirshick/py-faster-rcnn.

we can generate a set of true positives and false positives and
report the ROC curve. For the more restrictive continuous
scores, the true positives are weighted by the IoU scores.
On IJB-A, we use the discrete score setting and report the
true positive rate based on the normalized false positive rate
per image instead of the total number of false positives.

B. Comparison of Face Proposals

We compare the RPN with other approaches including
EdgeBox [6], Faceness [33], and DeepBox [17] on FDDB.
EdgeBox evaluates the objectness score of each proposal
based on the distribution of edge responses within it in a
sliding window fashion. Both Faceness and DeepBox re-
rank other object proposals, e.g., EdgeBox. In Faceness,
five CNNs are trained based on attribute annotations of
facial parts including hair, eyes, nose, mouth, and beard. The
Faceness score of each proposal is then computed based on
the response maps of different networks. DeepBox, which is
based on the Fast R-CNN framework, re-ranks each proposal
based on the region-pooled features. We re-train a DeepBox
model for face proposals on the WIDER training set.

We follow [6] to measure the detection rate of the top
N proposals by varying the Intersection-over-Union (IoU)
threshold. The larger the threshold is, the fewer the pro-
posals that are considered to be true objects. Quantitative
comparisons of proposals are displayed in Fig. 2. As can be
seen, the RPN and DeepBox are significantly better than
the other two. It is perhaps not surprising that learning-
based approaches perform better than the heuristic one,
EdgeBox. Although Faceness is also based on deeply trained
convolutional networks (fine-tuned from AlexNet), the rule
to compute the faceness score of each proposal is hand-
crafted in contrast to the end-to-end learning of the RPN and
DeepBox. The RPN performs slightly better than DeepBox,
perhaps since it uses a deeper CNN. Due to the sharing
of convolutional layers between the RPN and the Fast R-
CNN detector, the process time of the entire system is lower.
Moreover, the RPN does not rely on other object proposal
methods, e.g., EdgeBox.

C. Comparison of Region-based CNN Methods

We also compare face detection performance of the R-
CNN, the Fast R-CNN, and the Faster R-CNN on FDDB.
For both the R-CNN and Fast R-CNN, we use the top 2000
proposals generated by the Faceness method [33]. For the R-
CNN, we fine-tune the pre-trained VGG-M model. Different
from the original R-CNN implementation [11], we train a
CNN with both classification and regression branches end-
to-end following [33]. For both the Fast R-CNN and Faster
R-CNN, we fine-tune the pre-trained VGG16 model. As can
be observed from Fig. 3, the Faster R-CNN significantly
outperforms the other two. Since the Faster R-CNN also
contains the Fast R-CNN detector module, the performance
boost mostly comes from the RPN module, which is based
on a deeply trained CNN. Note that the Faster R-CNN also
runs much faster than both the R-CNN and Fast R-CNN, as
summarized in Table I.

https://github.com/rbgirshick/py-faster-rcnn
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Fig. 4. Comparisons of face detection with state-of-the-art methods. (a) ROC curves on FDDB with discrete scores, (b) ROC curves on FDDB with
discrete scores using less false positives, (c) ROC curves on FDDB with continuous scores, and (d) results on IJB-A dataset.
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Fig. 5. Comparisons of face detection with state-of-the-art methods on the WIDER testing set. From left to right: (a) on the easy set, (b) on the medium
set, and (c) on the hard set.

D. Comparison with State-of-the-art Methods
We compare the Faster R-CNN model trained on WIDER

with 11 other top detectors on FDDB, all published since
2015. ROC curves of the different methods, obtained from
the FDDB results page, are shown in Fig. 4. For discrete

scores on FDDB, the Faster R-CNN performs better than all
others when there are more than around 200 false positives
for the entire test set, as shown in Fig. 4(a) and (b). With
the more restrictive continuous scores, the Faster R-CNN is
better than most of other state-of-the-art methods but poorer



(a) (b)
Fig. 6. Illustrations of different annotation styles of (a) WIDER dataset
and (b) IJB-A dataset. Notice that the annotation on the left does not include
the top of the head and is narrowly cropped around the face. The annotation
on the right includes the entire head.

than MultiresHPM [9]. This discrepancy can be attributed
to the fact that the detection results of the Faster R-CNN
are not always exactly around the annotated face regions,
as can be seen in Fig. 7. For 500 false positives, the true
positive rates with discrete and continuous scores are 0.952
and 0.718 respectively. One possible reason for the relatively
poor performance on the continuous scoring might be the
difference of face annotations between WIDER and FDDB.

The testing set of WIDER is divided into easy, medium,
and hard according to the detection scores of EdgeBox. From
easy to hard, the faces get smaller and more crowded. There
are also more extreme poses and illuminations, making it
extremely challenging. Comparison of our Faster R-CNN
model with other published methods are presented in Fig. 5.
Not surprisingly, the performance of our model decreases
from the easy set to the hard set. Compared with two
concurrent work [35], [36], the performance of our model
drops more. One possible reason might be that they consider
more cues, such as alignment supervision in [35] and multi-
scale convolution features and body cues in [36]. But in the
easy set, our model performs the best.

We further demonstrate qualitative face detection results
in Fig. 7 and Fig. 9. It can be observed that the Faster R-
CNN model can deal with challenging cases with multiple
overlapping faces and faces with extreme poses and scales.

In the right bottom of Fig. 9, we also show some failure
cases of the Faster R-CNN model on the WIDER testing set.
In addition to false positives, there are some false negatives
(i.e., faces are not detected) in the extremely crowded images,
this suggests trying to integrate more cues, e.g., the context
of the scene, to better detect the missing faces.

E. Face Annotation Style Adaptation

In addition to FDDB and WIDER, we also report quanti-
tative comparisons on IJB-A, which is a relatively new face
detection benchmark dataset published at CVPR 2015, and
thus not too many results have been reported on it yet. As
the face annotation styles on IJB-A are quite different from
WIDER, when applying the face detection model trained
on the WIDER dataset to the IJB-A dataset, the results
are very poor, suggesting the necessity of doing annotation
style adaptation. As shown in Fig 6, in WIDER, the face
annotations are specified tightly around the facial region
while annotations in IJB-A include larger areas (e.g., hair).

First, we use supervised annotation style adaptation.
Specifically, we fine-tune the face detection model on the
training images of each split of IJB-A using only 10,000
iterations. In the first 5,000 iterations, the base learning
rate is 0.001 and it is reduced to 0.0001 in the last 5,000.
Note that there are more then 15,000 training images in
each split. We run only 10,000 iterations of fine-tuning to
adapt the regression branches of the Faster R-CNN model
trained on WIDER to the annotation styles of IJB-A. The
comparison is shown in Fig. 4(d). We borrow results of other
methods from [4], [15]. As we can see, the Faster R-CNN
performs better than all of the others by a large margin. More
qualitative face detection results on IJB-A can be found at
Fig. 8.

However, in a private superset of IJB-A (denote as sIJB-
A), all annotated samples are reserved for testing, which
means we can not used any single annotation of the testing
set to do supervised annotation style adaptation. Here we
propose a simple yet effective unsupervised annotation style
adaptation method. In specific, we fine-tune the model
trained on WIDER on sIJB-A, as what we do in the super-
vised annotation style adaptation. We then run face detections
on training images of WIDER. For each training image,
we replace the original WIDER-style annotation with its
detection coming from the fine-tuned model if their IoU
score is greater than 0.5. We finally re-train the Faster
R-CNN model on WIDER training set with annotations
borrowed from sIJB-A. With this “cycle training”, we can
obtain similar performance to the supervised annotation style
adaptation.

V. CONCLUSION

In this report, we have demonstrated state-of-the-art face
detection performance on three benchmark datasets using
the Faster R-CNN. Experimental results suggest that its
effectiveness comes from the region proposal network (RPN)
module. Due to the sharing of convolutional layers between
the RPN and Fast R-CNN detector module, it is possible
to use multiple convolutional layers within an RPN without
extra computational burden.

Although the Faster R-CNN is designed for generic object
detection, it demonstrates impressive face detection perfor-
mance when retrained on a suitable face detection training
set. It may be possible to further boost its performance by
considering the special patterns of human faces.
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Fig. 7. Sample detection results on the FDDB dataset, where green bounding boxes are ground-truth annotations and red bounding boxes are detection
results of the Faster R-CNN.

Fig. 8. Sample detection results on the IJB-A dataset, where green bounding boxes are ground-truth annotations and red bounding boxes are detection
results of the Faster R-CNN.



Fig. 9. Sample detection results on the WIDER testing set.
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