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Abstract

In addition to the experiments in the main paper, we in-
clude the following extended discussions and results:

• Histogram specification for cross-domain score map-
ping (Sec. 1).
• Application to semi-supervised learning (Sec. 2).
• Pedestrian dataset statistics (Sec. 3).
• Additional qualitative results (Sec. 4).

For further details, please visit the project webpage:
http://vis-www.cs.umass.edu/unsupVideo/

1. Histogram specification
We provide a brief review, mostly adapted from Gonza-

les and Woods [2], of the histogram specification method
used to map between the distribution of scores in source
and target domains. The terms original and desired is used
to denote the two distributions we want to map between, to
reduce ambiguity with source-domain and target-domain.

Assuming continuous values for ease of exposition, let
the original distribution have probability density function
(p.d.f.) pr(r), with 0 ≤ r ≤ 1. Let the desired distribution
have p.d.f. pz(z), with 0 ≤ z ≤ 1.

Let us consider the cumulative distribution functions
(c.d.f.) as two transformations F and G, acting on the orig-
inal and desired distributions, respectively.

s = F (r) =

∫ r

0

pr(w)dw (1)

v = G(z) =

∫ z

0

pz(u)du (2)

From Eq. 2, z = G−1(v), will give back the values z of
the desired distribution pz(z). Instead of v, if the values of s

in Eq. 1 are used, we can re-map values r from the original
distribution pr(r) to values in the desired distribution:

z = G−1(s) = G−1[F (r)] (3)

T → S score mapping. This involves making the distri-
bution of detector scores on the target domain T resemble
the distribution of scores on the source domain S. The score
values are binned between 0 and 1 with step-size of 0.01.
The inverse mapping is done using linear interpolation.
S → T score threshold. This involves the reverse of the

previous process – we choose a threshold based on labeled
source data, and then “transfer” this to the target domain via
histogram specification, as above.

2. Application to semi-supervised learning

Table 1: Semi-supervised learning results on BDD.

Method AP # images

Baseline 20.07 ± 0.00 12,477
Det 30.25 ± 0.34 100,001
HP 30.35 ± 0.58 100,001
HP-cons 31.36 ± 0.67 100,001
Ground-truth 35.38 ± 0.83 57,513

The general approach of re-training a model on using a
mixture of labeled and unlabeled data is an instance of semi-
supervised learning, without necessarily having a domain
adaptation component, i.e. there is no domain shift between
train and test datasets – we merely augment the labeled
training set with additional unlabeled (pseudo-labeled) data.
Table 1 shows results using BDD(clear,daytime) as la-
beled data, the rest of BDD as unlabeled data, and evalu-
ations on the BDD(clear,daytime) test set. The extra self-
labeled training data (Det) improves considerably over
the baseline. Training on a smaller amount of perfect la-
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bels (Ground-truth) is an expected upper-bound. Our soft-
labeling strategy emphasizes hard examples from the target
domain, which is specific to the domain adaptation task and
not useful for general semi-supervised learning – we can
see soft-labels (HP-cons) is not significantly better than
hard labels (HP). Implicit domain-shift in the unlabeled data
(lots of night-time videos, while we test on day) is a realis-
tic confounding factor – we cannot always ensure that the
unlabeled data is exactly matching the train and test distri-
butions. Eliminating such confounding factors should im-
prove the test performance.

3. BDD 100k dataset statistics
The BDD 100k dataset [5] provides detailed annotations

on conditions such as time of day (e.g. dawn, dusk, night,
day) and weather (e.g. rainy, clear, snowy, etc.), among oth-
ers. Each of the 100k videos has one frame annotated with
objects. We use these ground-truth annotations to divide the
dataset into source and target domains, summarized in Fig-
ure 1. Note that when we perform pseudo-labeling on target
domain videos, we are discarding all label information, ex-
cept what was used to create the two domains.

4. Additional qualitative results
We show additional qualitative results on the BDD [5]

pedestrian dataset (Figures 2, 3). Please note, due to re-
strictions and privacy concerns [4], we show only selected
images from CS6/IJB-S in the main paper and do not in-
clude extensive qualitative results from surveillance videos
in this supplemental.

References
[1] Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. Van Gool. Do-

main adaptive faster r-cnn for object detection in the wild. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3339–3348, 2018.

[2] R. C. Gonzalez, R. E. Woods, et al. Digital image processing,
2002.

[3] S. Jin, A. RoyChowdhury, H. Jiang, A. Singh, A. Prasad,
D. Chakraborty, and E. Learned-Miller. Unsupervised hard
example mining from videos for improved object detection.
In European Conference on Computer Vision (ECCV), 2018.

[4] N. D. Kalka, B. Maze, J. A. Duncan, K. OConnor, S. Elliott,
K. Hebert, J. Bryan, and A. K. Jain. Ijb–s: Iarpa janus surveil-
lance video benchmark.

[5] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and
T. Darrell. Bdd100k: A diverse driving video database with
scalable annotation tooling. arXiv preprint arXiv:1805.04687,
2018.

cle
ar

rai
ny

sno
wy

ov
erc

ast
pa

rtly

clo
ud

y fog
gy

un
de

fin
ed

0

2000

4000

6000

8000

10000

12000

nu
m

be
r o

f i
m

ag
es

Weather

da
yti

me
nig

ht

da
wn/d

usk

un
de

fin
ed

0

2000

4000

6000

8000

10000

12000

Time of Day

cle
ar

rai
ny

sno
wy

ov
erc

ast
pa

rtly

clo
ud

y fog
gy

un
de

fin
ed

0

5000

10000

15000

20000

25000

30000

35000

nu
m

be
r o

f i
m

ag
es

Weather

da
yti

me
nig

ht

da
wn/d

usk

un
de

fin
ed

0

10000

20000

30000

40000

50000

Time of Day

Figure 1: Images in BDD 100k [5] across weather condi-
tions and time of day are used to create source and tar-
get domains. Rows 1-2: the number of images in source
BDD(clear,daytime). Rows 3-4: the number of images in
target BDD(rest), spanning all other weather and time-of-
day conditions.
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Figure 2: Qualitative results(best zoomed-in). (a) Baseline; (b) HP [3]; (c) Distill-ours; (d) DA[1]. The domain adapted
methods (HP, Distill, DA) pick up prominent objects missed by the baseline detector, along with a few false positives (rows
1,4,7). Row 2: Distill and HP get the prominent pedestrian on the right, while DA misses it. Row 3: the HP method detects
a motorcycle rider as a pedestrian, while the soft-labeled Distill method gets this subtle difference correctly. Failure modes:
part of the wheel detected as a pedestrian by all the domain adapted methods (row 5); rider detected as pedestrian (row 6).
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Figure 3: More qualitative results(best zoomed-in). (a) Baseline; (b) HP [3]; (c) Distill-ours; (d) DA[1]. Rows 1,2:
the domain adversarial method (DA) detects false positives, which are avoided by our Distill method. Pedestrians that are
challenging for the baseline detector are picked up after domain adaptation in rows 3,4,7,8. Row 5: when conditions are
well-lit and clear – similar to the training set of the Baseline mode, there is not much difference with the domain adapted
models.
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