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Fig. 1: We propose a novel approach to collect time-synchronized images with a fleet of UAVs for mapping dynamic scenes
in unstructured outdoor environments. In our system, we utilize GNSS-PPS to synchronize cameras across UAVs and collect
two dataset sequences to generate 4D maps of dynamic scenes. (a) shows the data from one out of four UAVs spanning
multiple timesteps and (b) shows the multi-view data collection system at a single timestep from the sequence.

Abstract— Recent advances in 3D scene reconstruction, such
as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting,
have demonstrated remarkable results in novel view synthesis
and dynamic scene representation. Despite these successes, ex-
isting approaches rely on time-synchronized multi-view imagery
captured using specialized camera rigs in controlled environ-
ments. This reliance limits their applicability in uncontrolled,
unbounded dynamic scenes. In this work, we propose a novel
Unmanned Aerial Vehicle (UAV) based multi-view capture
system that leverages GNSS Pulse Per Second (PPS) signals
for precise frame synchronization across multiple cameras.
Our system eliminates the need for fixed infrastructure, en-
abling flexible and scalable data collection for dynamic scene
reconstruction in diverse environments. In addition to the
system architecture, we also introduce a dataset of synchronized
multi-view images captured in unbounded outdoor scenes from
four synchronized UAVs, each carrying a stereo camera rig.
We benchmark several 3D and 4D representation methods
on our dataset and highlight the challenges associated with
data collection in unstructured outdoor settings such as sparse
views, varied lighting conditions, visual degradation etc. Our
hardware configuration details, software details and dataset is
available at https://github.com/neufieldrobotics/
Dynamic_Mapping.
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I. INTRODUCTION

Recent advances in computer vision have led to the
development of powerful models like Neural Radiance Fields
(NeRF) [1] and 3D Gaussian Splatting [2], which enable
high-fidelity 3D scene reconstruction and novel view syn-
thesis from multi-view images. The capabilities of these
models is further extended in representing dynamic scenes by
capturing multi-view images over multiple timesteps in [3],
[4], [S]. However, applying these methods on dynamic scenes
requires time-synchronized images from multiple viewpoints.
[6], [7] are examples of some of such datasets and their data
collection methods.

Traditionally, acquiring suitable datasets required special-
ized camera rigs or controlled studio environments with
precisely synchronized cameras. The major limitation of
these systems is the inability to truly capture multi-view
images in unstructured outdoor scenes. Applications in both
the computer vision community (e.g., human motion capture
in the wild, Computer Generated Imagery (CGI), sports
analysis, AR/VR content generation) and the scientific com-
munity (e.g., environmental monitoring, sea-wave mapping,
animal motion capture) are often constrained by traditional
data acquisition methods, limiting the practical deployment
of advanced 3D reconstruction models. Consequently, there
is a pressing need for flexible, scalable systems that can
collect synchronized multi-view imagery without requiring
careful instrumentation of the scene in advance.



In this paper, we introduce a novel system that leverages
a fleet of Unmanned Aerial Vehicles (UAVs) equipped with
stereo cameras synchronized using the Global Navigation
Satellite System (GNSS) Pulse Per Second (PPS) signal.
With the GNSS PPS signal, we achieve precise time syn-
chronization across multiple UAVs, ensuring that all cameras
capture images simultaneously. By eliminating the need
for specialized camera rooms or tedious synchronization
mechanisms, our system enables the collection of time-
synchronized, multi-view datasets in outdoor environments,
overcoming the constraints associated with traditional meth-
ods. Moreover, the mobility of UAVs allows for adaptable
positioning and coverage of large or inaccessible areas,
facilitating the capture of complex scenes from diverse
perspectives. This capability is particularly beneficial for
feeding data into models like NeRFs and Gaussian Splatting,
which require high-quality, synchronized imagery for optimal
performance.

To the best of our knowledge, this is the first time wireless
synchronized UAVs have been used to collect high-quality
time-synchronized multi-view images to support reconstruc-
tion of a dynamic environment in a distributed manner. Using
our system of four UAVs, we collect two long sequences
of dynamic scene with 360° and 180° scene coverage, re-
spectively. This dataset enables new research directions in
scene representation, allowing exploration of reliable and
geometrically accurate scene representation methods and
highlighting real-world data collection challenges such as
sparse views, large viewpoint shifts, and varying lighting
conditions.

Our contributions can be summarized as follows:

« We present the system design of a dynamic multi-
view capture system consisting of a GNSS PPS-based
synchronization system for coordinating multiple UAV-
mounted cameras, enabling precise time alignment with-
out specialized infrastructure.

« We release two long dataset sequences with varying
configurations capturing a dynamic scene. Both se-
quences are captured using 4 UAVs with a stereo camera
onboard. We also release our hardware and software
configuration details.

« We have benchmarked several state-of-the-art algo-
rithms across 3D and 4D representation methods and
present a comparison among the algorithms both quali-
tatively and quantitatively highlighting fundamental is-
sues that need the entire community’s effort to tackle.

II. RELATED WORK
A. Marker Based Motion Capture

Marker-based motion capture (mocap) systems involve
attaching reflective or active markers to the subject, which
are then tracked by multiple cameras or sensors. The cameras
emit or detect specific wavelengths of light reflected by
these markers to triangulate their precise positions in 3D
space. The resulting data provides accurate joint trajectories
for applications in film production, video games, sports

science, and medical rehabilitation [8], [9], [10] . A key
advantage of marker-based systems is their high accuracy
and reliability, which has made them an industry standard
in many professional environments. However, these systems
require controlled conditions (such as studios with calibrated
cameras), significant preparation time, and may constrain the
performer’s natural movement if many markers are attached.
Our system on the other hand does not require any markers,
and is not limited to studio settings. Moreover, since UAVs
are mobile, our system can be extended to track objects
across large scenes.

B. Markerless Motion Capture

Markerless motion capture aims to track human movement
without the need for special markers or suits. Instead, these
methods rely on computer vision techniques, such as feature
detection, silhouette analysis, or deep learning-based pose
estimation, to infer body joint positions and orientations [6],
[7]. The removal of markers simplifies the mocap pipeline
and reduces preparation time. It also allows for more natural
movement as participants are not encumbered by markers.
However, markerless approaches require synchronized cam-
eras, and thus they are limited to studio settings where wired
synchronization can be easily implemented. In contrast, our
system is suitable for deploying an effectively unlimited
number of synchronized nodes in outdoor scenes globally
without any prior environmental preparation required.

C. Sensor Synchronization

In multi-sensor motion capture systems—whether marker-
based or markerless—synchronizing data streams from dif-
ferent sensors (cameras, inertial measurement units, depth
sensors, etc.) is critical for accurate spatiotemporal align-
ment. The general concept in wireless synchronization[11]
is to transmit a low-frequency synchronization signal over
a wireless channel from a centralized source with a precise
clock and recover the synchronization pulse for disciplining
local oscillators at multiple receiver nodes. The [12], [13],
[14] outlines popular wireless synchronization methods and
associated challenges. Some of them in [15], [16], [17], [18]
require proprietary, closed source hardware at the transmitter
and receiver nodes. At the same time, software protocols in
most methods [19], [20] are closed-sourced, with exceptions
being [12]. Most of these methods use dedicated infras-
tructure to relay the synchronization signal instead of using
existing physical layers or links on robots. Our system on
the other hand uses only commercially available hardware
and open-source software to achieve synchronization across
multiple nodes.

III. DATA COLLECTION SYSTEM
A. UAV System Description

Our UAV data collection system was designed to fa-
cilitate the synchronized and geo-referenced acquisition of
images across multiple platforms in an outdoor environment.
In addition to the standard flight components, each UAV
comprises a multi-band GNSS receiver, a synchronization
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Fig. 2: Hardware system architecture of the multi-UAV data collection system. Each UAV consists of (1) a GNSS receiver
module for navigation and time-synchronization, (2) an onboard computer for running navigation algorithms, monitoring, and
logging data, and (3) a synchronization module that generates trigger signals for sensors. Mesh radios facilitate communication

between UAVs and the Ground Control Station (GCS).

trigger distribution board, an onboard payload computer for
data processing and storage, and a stereo camera rig for
image acquisition. Fig. 2 shows an overview of our complete
hardware system.

1) GNSS Receiver: In our design, the Ublox Zed-F9T
GNSS IC is integrated along with a lightweight helical multi-
band GNSS antenna. The resulting multi-band GNSS solu-
tion provides accurate positioning and timing information for
subsequent data processing.

The Ublox Zed-F9T GNSS IC is a developer-friendly,
low-power multi-band GNSS receiver with a Sns timing
accuracy and a user configurable GPS disciplined oscillator
(GPSDO) capability. The temperature-controlled local os-
cillator (TCXO) on FI9T outputs a 1kHz reference, which
is disciplined using an estimated 1PPS reference from the
GNSS engine. The TCXO is used to generate two variable-
frequency user-configurable time-pulse (TP) outputs, TP1
and TP2. These reference signals are aligned to the top
of the second via the GNSS receiver and therefore aligned
across multiple UAVs. The time pulse output signals can be
configured from 0.25Hz to 25MHz.

For our purposes, TP1 is configured to 1Hz and enables
precise synchronization of the onboard computer with UTC
time. TP2 is configured to the desired camera frame rate of
10Hz. The signal from TP2 is distributed to both cameras
through the synchronization board.

®)

Fig. 3: Visualization of time synchronization across all
UAVs. (a) shows the images captured from all four UAVs
before starting data collection. (b) shows the images captured
right after data collection.



2) Synchronization board: The synchronization board
consists of Texas Instruments SN74LS07 IC with six non-
inverting hex buffers and connectors for power, debugging,
input sync signal, and trigger outputs.

The synchronization board takes the time-pulse output
from the GNSS as input and distributes it to a variety of
end devices. In doing so, it sources additional current to
buffer the signal and can also facilitate logic inversion and
level shifting to meet the requirements of each particular
device. For example, the FLIR Blackfly S cameras used for
this application require a 3.3V tolerant Transistor-Transistor
Logic (TTL) for their external trigger.

3) Onboard Computer: An Nvidia Jetson Orin Nano 8GB
serves as the onboard computer for each UAV. This computer
receives and stores sensor data. The integrated GPU provides
the capability to evaluate algorithms onboard and a serial
connection to the UAV flight controller enables execution of
autonomous flight behaviors. The computer software stack
includes the Robot Operating System (ROS)[21] which pro-
vides a flexible framework to implement vehicle behaviors
as ROS nodes and also to log timestamped sensor data from
multiple sensors using the provided rosbag utility.

4) Stereo Camera: Each UAV is equipped with a cali-
brated stereo camera rig which is triggered by the GNSS TP2
signal provided through the synchronization board. The rig
consists of two Blackfly S BFS-U3-16S2C cameras mounted
at a baseline of 20cm and configured to capture RGB images
at 1440 x 1080 resolution. Images are collected at 10 frames
per second (FPS), as dictated by the frequency of TP2. Fig 4
shows the complete hardware setup on one UAV.

B. Ground Control Station System Description

The Ground Control Station (GCS) includes a Linux com-
puter and a WiFi access point. The primary role of the GCS is
to provide situational awareness to the UAV operators during
a mission. By connecting to the UAV OBCs through the
GCS, it is possible to verify time synchronization and data
collection processes are running. Additionally, a GStreamer
process running on each UAV streams images over UDP to
the GCS in real-time. To optimize bandwidth usage, these
streamed images are transmitted at a reduced resolution and
a configurable downsampled frame rate, typically 1/10th of
actual acquisition rate.

C. Time synchronized and geo-referenced data collection

We combine four of the described UAV systems with
a GCS to implement a synchronized multi-view capture
system.

The Ublox Zed F9T is the backbone of our time synchro-
nization system. By synchronizing all UAVs and GCS to
GNSS UTC time and aligning all sensor trigger signals with
the phase of the GNSS 1PPS signal, we are able to achieve
sub microsecond frame synchronization across all cameras,
as demonstrated by Figure 3.

1) Synchronization of system time: The GPS daemon,
gpsd, running on the GCS ingests GNSS data in the form

of binary UBX messages. It publishes the global time in-
formation parsed from these messages to a shared memory
interface for the Linux network time protocol (NTP) daemon:
chrony. Chrony, receiving both UTC time from GPSD and
a precise 1 PPS top-of-second reference from a general
purpose input/output pin connected directly to the GNSS IC,
is able to precisely synchronize system time with UTC. The
GCS then functions as a stratum 1 NTP time source for all
of the UAV OBCs. The GCS and UAVs communicate over a
WiFi local area network provided by the GCS access point.

2) Monitoring binary UBX messages: The UBX-TIM-
TM2 and UBX-MON-RF are monitored by each UAV to
(a) Obtain and log the timestamps of output trigger pulses
from the synchronization board in UTC time and (b) Detect
the presence of an active jammer in the vicinity.

3) Logging raw GNSS data: The raw GNSS data on all
UAVs and on the GCS is logged and can be processed to
obtain a post-processed kinematic (PPK) GNSS solution. It
can serve as a ground truth reference for all UAV positions.
The raw UBX data can be processed by the RTKCONV and
RTKPOST apps in the open-source GNSS processing library
RTKLIB[22], to produce the PPK GNSS solution. Addi-
tionally, the GPSD-based Robot Operating System (ROS)
driver[23] is used to publish GNSS positioning data to
navigate the UAVs to desired waypoints in real time.

4) Image post-processing scripts: The images captured
across multiple UAVs are temporally correlated using the
ROS message timestamp consistent across rosbags from
all OBCs. Using rosbags from multiple UAVs, the post-
processing scripts output synchronized image frames from
multiple viewpoints.

Flight
Controller

Multi-Band
, /GNSSAntenna

UBlox - F9T
GNSS
module

Synchronization
Module

Stereo Camera Rig

Fig. 4. UAV integrated with our proposed stack for syn-
chronous Image acquisition across multiple nodes

IV. DATASET

We collect two sequences using our system in outdoor
environments. In both datasets, four UAVs hover in formation
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Fig. 5: Visualization of data samples from the 360 sequence from different viewpoints at different timesteps.

Duration Number

Label (s) of Images

Size Description

symmetric scene,
varying lighting,
large view-point change

360 302 24160 92GB

unbounded scene,
moderate
view-point change

180 321 25680 97GB

TABLE I: List of sequences in our datasets and their de-
scription

surrounding a human playing with a ball. Table I summarizes
key properties of each sequence.

A. 360 Sequence

For the 360 sequence, the four UAVs are uniformly dis-
tributed across a full 360° of potential subject viewing angles,
allowing for complete coverage of the subject located at the
center of a basketball court. The court’s largely symmet-
rical layout introduces geometric ambiguities, challenging
reconstruction methods that rely on distinctive feature points.
Additionally, because two UAVs face the sun while two do
not, the onboard camera processing results in visible color
and brightness inconsistencies—specifically, the court’s gray
surface appears yellowish in some views. These lighting and
color variations highlight the challenges of collecting data in
the real-world. Fig 5 shows some example images from this
sequence.

B. 180 Sequence

In contrast, the 180 sequence has the four UAVs distributed
uniformly across only approximately 180° of the potential
subject viewing angles. This captures a more limited frontal
sector of the scene, but offers a higher degree of overlap
between adjacent views. Recorded on a football field, this
setting provides more texture and features than the basketball
court, although reliably establishing correspondences across
the wider area remains a challenge. Despite its relatively
denser coverage, the dataset still tests the resilience of 3D
reconstruction methods to real-world factors such as partial
occlusions, minor lighting shifts, and variations in camera
orientation.

V. BENCHMARKING THE SOTA

To demonstrate the quality and usefulness of the dataset,
we benchmark across a set of well-known state-of-the-art 3D
representation methods. The selected algorithms are chosen
to provide comprehensive coverage of the field, including
NeRFs [1], 3D Gaussian splatting [2], Sparse-NeRFs [24],
[25], [26] and Sparse 3D Gaussian Splatting methods [27],
[28], [29]. We also investigate 4D representation methods
such as 4D Gaussian Splatting [4] and DynNeRF [30].

A. Evaluation

Both NeRF and 3DGS type methods require camera poses
for each image which are generally obtained using Structure
from Motion (SFM) techniques. Because our dataset contains
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Fig. 6: Visualization of sparse dynamic reconstruction from different timesteps and from different view points generated
using VGGSFM [31]. For a more comprehensive representation of the dynamic point cloud, please refer to the accompanying

video submission.

images with large viewpoint changes, classical SFM tools
such as COLMAP [32], [33] fail to align images across
UAVs. The only SFM method able to do so is VGGSFM [31].
We generate a sparse point cloud and corresponding camera
poses for each timestep using [31] and use that to initialize
all 3D methods for evaluation. For 4D reconstruction, we first
register images from each drone along the time dimension
and use those pose estimates to align the sparse point
clouds from each timestep. Fig. 6 shows snapshots of the
sparse dynamic point cloud across different timesteps. Each
timestep contains a total of 8 images: 2 from each UAV. We
use 7 for training and hold out 1 for evaluation. For the 4D
representation methods, we use images at all timesteps from
7 cameras and hold out images from 1 camera for evaluation.
The evaluation results are summarized in Table II and Table
III. Fig. 7 shows the reconstruction of the hold out image
from 3D representation models.

\ 360 Sequence 180 Sequence

Method | SSIMt PSNRT LPIPS| |SSIMt PSNRf LPIPS|
3DGS 080  23.74 0.37 034 1737 0.47
SparseGS 0.74  17.90 0.37 0.41 18.95 0.40
InstantSplat | 0.78  21.26 0.37 0.43 19.81 0.43
2DGS 0.73 18.07 0.46 024 1494 0.55
NeRF 047  16.11 0.42 023 1535 0.58
SparseNeRF | 0.48  16.74 0.30 0.21 15.97 0.54
Zip-NeRF 093  25.67 0.08 075  21.67 0.17

TABLE II: List of sequences in our datasets and their
description

\ 360 Sequence 180 Sequence

Method | SSIMT PSNRT LPIPS| | SSIMT PSNRT LPIPS|
4DGS 067 1517 053 | 061 1637  0.57
DynNERF | 058 1625 047 | 054 1592 044

TABLE III: List of sequences in our datasets and their
description

B. Discussion

1) Sparse Views: While our system theoretically scales
to any number of UAVs, logistical concerns and cost will
ultimately place an upper bounds on the number used. Due
to resource constraints, we only utilized four UAV systems
for our data collection. With the 360 sequence in particular,
we want to highlight the problem of using existing 3D
representation methods with only sparse views. As evident
from Tab. II, even the latest state-of-the-art methods suffer
when the viewing angles are sparse. This can be primarily
attributed to the fact that these methods are not grounded
in scene geometry and only minimize photometric loss over
the given images. In our experiments, only Zip-NeRF [26]
performs reasonably well on both sequences, likely due to
its use of a multi-scale optimization strategy.

2) Dynamic Reconstruction in the Wild: In both se-
quences, our dataset targets the challenge of representing
dynamic scenes from sparse, multi-view data. Most existing
work in this domain focuses on monocular camera rigs
[34], [35], leveraging different timesteps and camera poses
in a shared optimization to train a radiance field over an
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Fig. 7: This figure shows the output mesh generated by the evaluated 3D representation methods.

entire video. To evaluate multi-view dynamic scene repre-
sentation, we tested the methods of [4] and [30], but since
these approaches are not designed to handle sparse camera
viewpoints, they exhibit suboptimal performance on both
sequences in our dataset.

3) Potential Usage: The previous discussion clearly
shows the current limitations of 3D and 4D representation
methods. Despite the challenges of sparse camera coverage,
varying illumination from viewpoint shifts, and limited geo-
metric grounding—the system and dataset we present offer
an invaluable testbed for pushing the boundaries of 3D/4D
reconstruction. Researchers can use our real-world scenarios
to develop and validate new approaches that integrate richer
geometry priors and more robust optimization strategies. Fur-
thermore, applications in both computer vision community
(CGI, AR/VR, sports analytics etc) and science community
(environmental monitoring, sea-wave mapping, animal mo-
tion capture etc) stand to benefit from solutions that can
handle such imperfect, field-collected data and still produce
reliable reconstructions. One potential research direction is to
use diffusion models to improve reconstruction with sparse
views as presented in [36], [37]. These approaches could
also be extended to dynamic scenes by using video diffusion
models instead of image-diffusion.

VI. CONCLUSION AND FUTURE WORK

In this work, we tackled the challenge of capturing
time-synchronized, multi-view imagery for dynamic scene
reconstruction outside controlled studio environments. Our
novel multi-UAV system, which leverages GNSS PPS-based
synchronization, circumvents the need for specialized infras-
tructure or wired synchronization configurations and enables
data collection in unstructured outdoor settings. We con-
tribute a comprehensive dataset of two extended sequences,
each captured with four UAVs equipped with stereo cam-

eras. This dataset inherits all the complexities of data from
an uncontrolled environment, including sparse viewpoints,
symmetries, featureless regions, and dynamic elements. Our
experimental evaluations on state-of-the-art scene representa-
tion approaches highlight both the promise and shortcomings
of current static/dynamic scene representation methods. With
this dataset, we aim to drive the development of 3D/4D
representation methods that can operate reliably in the real-
world.

Our system’s potential extends beyond conventional
3D/4D reconstruction tasks, as it paves the way for a range
of applications for the computer vision and the science
community. In ongoing and future work, we plan to expand
our dataset and incorporate additional scenes with dynamic
object tracking, formation flying, and other advanced data
collection maneuvers. We also intend to pursue new algo-
rithmic solutions—both independently and through collabo-
rations—to further push the boundaries of real-world 3D and
4D reconstruction methods.
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